- Python Features
- Python Installation
- PyCharm Configuration
- Python Variables
- Python Data Types
- Python If Else
- Python Loops
- Python Strings
- Python Lists
- Python Tuples
- Python List Vs Tuple
- Python Sets
- Python Dictionary
- Python Functions
- Python Built-in Functions
- Python Lambda Functions
- Python Files I/O
- Python Modules
- Python Exceptions
- Python Datetime
- Python List Comprehension
- Python Collection Module
- Python Sys Module
- Python Decorator
- Python Generators
- Python JSON
- Python OOPs Concepts
- Python Numpy Module
- Python Pandas Module
- Python Sqlite Module
Introduction :
In Python, every value has a specific data type associated with it. Data types define the nature of the variables, objects, or values you can work with in your code. Understanding different data types is crucial for effective programming. Let’s explore the commonly used data types in Python.
Numeric Types:
- Integer (int): Represents whole numbers without decimal points.
In Python, the integer data type (int) represents whole numbers without any decimal points. Integers can be positive or negative, and they have no limit on their size, allowing you to work with both small and large numbers.
Example:
num1 = 10
- Floating-Point (float): Represents decimal numbers.
In Python, the float data type represents decimal numbers. Floats are used to represent real numbers, including both positive and negative values. Unlike integers, floats can have decimal points and can represent numbers with fractional parts.
Example:
num2 = 3.14
- Complex (complex): Represents numbers with real and imaginary parts.
In Python, the complex data type represents numbers with both real and imaginary parts. Complex numbers are often used in mathematical and scientific computations that involve complex arithmetic operations.
Example:
num3 = 4 + 5j
Sequence Types:
- String (str): Represents a sequence of characters enclosed in quotes.
In Python, a string is a sequence of characters enclosed in single quotes (‘ ‘) or double quotes (” “). Strings are immutable, which means once created, they cannot be modified. However, you can create new strings based on existing ones.
In Python, a string is a sequence of characters enclosed in single quotes (‘ ‘) or double quotes (” “). Strings are immutable, which means once created, they cannot be modified. However, you can create new strings based on existing ones.
Example:
name = "John"
- List (list): Represents an ordered collection of items enclosed in square brackets.
In Python, a list is a versatile and mutable data type that represents an ordered collection of items. Lists can contain elements of different data types, such as numbers, strings, or even other lists. Lists are denoted by square brackets [ ].
Example:
numbers = [1, 2, 3, 4, 5]
- Tuple (tuple): Represents an ordered collection of items enclosed in parentheses.
In Python, a tuple is an ordered collection of elements, similar to a list. However, unlike lists, tuples are immutable, meaning they cannot be modified once created. Tuples are typically denoted by parentheses ( ) or can be created without any delimiters.
Example:
coordinates = (10, 20)
Dictionary (dict):
Represents a collection of key-value pairs enclosed in curly braces.
In Python, a dictionary is an unordered collection of key-value pairs. It is also known as an associative array or a hash map. Dictionaries are enclosed in curly braces { }, and each item in the dictionary is represented as a key-value pair separated by a colon (:).
Example:
person = {"name": "John", "age": 25, "city": "New York"}
Set Types:
Set (set): Represents an unordered collection of unique items enclosed in curly braces.
In Python, a set is an unordered collection of unique elements. Sets are denoted by curly braces { }. Each element in a set must be unique, and duplicate values are automatically removed. Sets are mutable, meaning you can modify them after creation.
Example:
fruits = {"apple", "banana", "orange"}
Boolean Type:
Boolean (bool): Represents either True or False.
In Python, the Boolean data type represents truth values. A Boolean value can be either True or False. Booleans are often used for logical operations and comparisons.
In Python, the keywords True and False (with the first letter capitalized) are used to represent Boolean values.
Example:
is_active = True
is_admin = False
Datatype Conversion:
Below is a table that demonstrates the conversion of various Python data types into other data types. Each entry in the table includes the original data type, the target data type, a code snippet to perform the conversion, and an example output.
Integer(int) : Convert int Data Type to all other Data Type.
Data Type | Target Data Type | Code | Output |
int | float | num_int = 10 num_float = float(num_int) | 10.0 |
int | str | num_int = 42 num_str = str(num_int) | ’42’ |
int | complex | num_int = 5 num_complex = complex(num_int) | (5+0j) |
int | list | num_int = 123 num_list = list(num_int) | TypeError: ‘int’ object is not iterable Conversion is not possible |
int | dict | num_int = 1 num_dict = dict(num_int) | TypeError: ‘int’ object is not iterable Conversion is not possible |
int | tuple | num_int = 7 num_tuple = tuple(num_int) | TypeError: ‘int’ object is not iterable Conversion is not possible |
int | bool | num_int = 0 num_bool = bool(num_int) print(num_bool) num_int1 = 123 num_bool1 = bool(num_int1) print(num_bool1) | False True |
Float: Convert Float Data Type to all other Data Type.
Data Type | Target Data Type | Code | Output |
float | int | num_float = 10.5 num_int = int(num_float) | 10 |
float | str | num_float = 3.14 num_str = str(num_float) | ‘3.14’ |
float | complex | num_float = 3.0 num_complex = complex(num_float,4.5) | (3+4.5j) |
float | list | num_float = 3.14 num_list = list(num_float) | TypeError: ‘int’ object is not iterable Conversion is not possible |
float | dict | num_float = 2.5 num_dict = dict(num_float) | TypeError: ‘int’ object is not iterable Conversion is not possible |
float | tuple | num_float = 1.5 num_tuple = float(num_float) | TypeError: ‘int’ object is not iterable Conversion is not possible |
float | bool | num_int = 0 num_bool = bool(num_int) print(num_bool) num_int1 = 12.3 num_bool1 = bool(num_int1) print(num_bool1) | False True |
Complex : Convert complex data type to all other data type.
Data Type | Target Data Type | Code | Output |
complex | int | num_complex = complex(3, 4) num_int = int(num_complex) | TypeError: int() argument must be a string, a bytes-like object or a real number, not ‘complex’ Conversion is not possible. |
complex | float | i). num_complex = complex(3, 4) num_float = float(num_complex) ii). num_complex = complex(3, 4) num_float = float(num_complex.real) | i).TypeError: float() argument must be a string or a real number, not ‘complex’ Conversion is not possible. ii). 3 |
complex | str | num_complex = complex(1, 2)<br>num_str = str(num_complex) | ‘(1+2j)’ |
complex | list | num_complex = complex(2, 3) num_list = [num_complex.real, num_complex.imag] | [2.0, 3.0] |
complex | dict | num_complex = complex(2, 1) num_dict = {‘real’: num_complex.real, ‘imag’: num_complex.imag} | {‘real’: 2.0, ‘imag’: 1.0} |
complex | tuple | num_complex = complex(4, 5) num_tuple = (num_complex.real, num_complex.imag) | (4.0, 5.0) |
complex | bool | num_complex = complex(0, 0) num_bool = bool(num_complex) | False |
String(str) : Convert str data type to all other data type.
Data Type | Target Data Type | Code | Output |
str | int | num_str = ‘987’ num_int = int(num_str) | 987 |
str | float | num_str = ‘2.71’ num_float = float(num_str) | 2.71 |
str | complex | num_str = ‘1+2j’ num_complex = complex(num_str) | (1+2j) |
str | list | str_val = ‘hello’ list_val = list(str_val) | [‘h’, ‘e’, ‘l’, ‘l’, ‘o’] |
str | dict | str_val = ‘hello’ dict_val = {str_val: len(str_val)} | {‘hello’: 5} |
str | tuple | str_val = ‘abc’ tuple_val = tuple(str_val) | (‘a’, ‘b’, ‘c’) |
str | bool | str_val = ‘True’ bool_val = bool(str_val) | True |
List(list) : Convert list data type to all other data type.
Data Type | Target Data Type | Code | Output |
list | int | num_list = [1, 2, 3] num_int = int(”.join(map(str, num_list))) | 123 |
list | float | num_list = [3, 1, 4] num_float = float(”.join(map(str, num_list))) | 314.0 |
list | str | num_list = [10, 20, 30] num_str = ‘, ‘.join(map(str, num_list)) | ’10, 20, 30′ |
list | complex | num_list = [2, 3] num_complex = complex(num_list[0], num_list[1]) | (2+3j) |
list | dict | num_list = [1, 2] num_dict = dict(zip(num_list, [‘one’, ‘two’])) | {1: ‘one’, 2: ‘two’} |
list | tuple | num_list = [7, 8, 9] num_tuple = tuple(num_list) | (7, 8, 9) |
list | bool | num_list = [0, 1, 0] num_bool = any(num_list) | True |
Tuple(tuple) : Convert tuple data type to all other data type.
Data Type | Target Data Type | Code | Output |
tuple | int | num_tuple = (4, 5, 6) num_int = int(”.join(map(str, num_tuple))) | 456 |
tuple | float | num_tuple = (1, 2) num_float = float(‘.’.join(map(str, num_tuple))) | 1.2 |
tuple | str | num_tuple = (7, 8, 9) num_str = ‘, ‘.join(map(str, num_tuple)) | ‘7, 8, 9’ |
tuple | complex | num_tuple = (3, 4) num_complex = complex(num_tuple[0], num_tuple[1]) | (3+4j) |
tuple | list | num_tuple = (10, 20) num_list = list(num_tuple) | [10, 20] |
tuple | dict | num_tuple = (‘x’, 1) num_dict = dict([num_tuple]) | {‘x’: 1} |
tuple | bool | num_tuple = (0, 0) num_bool = any(num_tuple) | False |
Dictionary(dict) : Convert dict data type to all other data type.
Data Type | Target Data Type | Code | Output |
ict | int | num_dict = {‘a’: 1} num_int = int(list(num_dict.keys())[0]) | 97 |
dict | float | num_dict = {‘pi’: 3.14} num_float = float(list(num_dict.values())[0]) | 3.14 |
dict | str | num_dict = {1: ‘one’} num_str = str(list(num_dict.keys())[0]) | ‘1’ |
dict | complex | num_dict = {3: 5} num_complex = complex(list(num_dict.keys())[0], list(num_dict.values())[0]) | (3+5j) |
dict | list | num_dict = {‘a’: 1, ‘b’: 2} num_list = list(num_dict.items()) | [(‘a’, 1), (‘b’, 2)] |
dict | tuple | num_dict = {‘x’: 10, ‘y’: 20} num_tuple = tuple(num_dict.items()) | ((‘x’, 10), (‘y’, 20)) |
dict | bool | num_dict = {‘flag’: True} num_bool = bool(list(num_dict.values())[0]) | True |
Set : Convert set data type to all other data type.
Data Type | Target Data Type | Code | Output |
set | int | num_set = {1, 2, 3} num_int = int(”.join(map(str, num_set))) | 123 |
set | float | num_set = {3, 1, 4} num_float = float(”.join(map(str, num_set))) | 314.0 |
set | str | num_set = {10, 20, 30} num_str = ‘, ‘.join(map(str, num_set)) | ’10, 20, 30′ |
set | complex | num_set = {2, 3} num_complex = complex(list(num_set)[0], list(num_set)[1]) | (2+3j) |
set | list | num_set = {1, 2, 3} num_list = list(num_set) | [1, 2, 3] |
set | dict | num_set = {1, 2, 3} num_dict = dict.fromkeys(num_set, ‘value’) | {1: ‘value’, 2: ‘value’, 3: ‘value’} |
set | tuple | num_set = {7, 8, 9) num_tuple = tuple(num_set) | (8, 9, 7) |
set | bool | num_set = set() num_bool = bool(num_set) | False |
Boolean(bool) : Convert bool data type to all other data type.
Data Type | Target Data Type | Code | Output |
bool | int | num_bool = False num_int = int(num_bool) | 0 |
bool | float | num_bool = True num_float = float(num_bool) | 1.0 |
bool | str | num_bool = True num_str = str(num_bool) | ‘True‘ |
bool | complex | num_bool = True num_complex = complex(int(num_bool), 0) | (1+0j) |
bool | list | num_bool = False num_list = [int(num_bool)] | [0] |
bool | dict | num_bool = True num_dict = {str(num_bool): ‘boolean’} | {‘True’: ‘boolean’} |
bool | tuple | num_bool = False num_tuple = (int(num_bool),) | (0,) |